
Single Machine Scheduling with Flow Time and
Earliness Penalties

J O N A T H A N F. B A R D 1, K R I S H N A M U R T H I V E N K A T R A M A N z, and
T H O M A S A. F E O 3
1Professor, Graduate Program in Operations Research and Industrial Engineering, Department of
Mechanical Engineering, University of Texas, Austin, TX 78712-1063, U.S.A., 2Graduate Student,
Department of Industrial Engineering and Engineering Management, Stanford University, Stanford,
CA 94350, U.S.A. ; 3Associate Professor, Graduate Program in Operations Research and Industrial
Engineering, Department of Mechanical Engineering, University of Texas, Austin, TX 78712-1063,
U.S.A.

Received: 26 February 1992: accepted: 28 July 1992)

Abstract. This paper considers the problem of scheduling n jobs on a single machine to minimize the
total cost incurred by their respective flow time and earliness penalties. It is assumed that each job has
a due date that must be met, and that preemptions are not allowed. The problem is formulated as a
dynamic program (DP) and solved with a reaching algorithm that exploits a series of dominance
properties and efficiently generated bounds. A major factor underlying the effectiveness of the
approach is the use of a greedy randomized adaptive search procedure (GRASP) to construct high
quality feasible solutions. These solutions serve as upper bounds on the optimum, and permit a
predominant portion of the state space to be fathomed during the DP recursion.

To evaluate the performance of the algorithm, an experimental design involving over 240 randomly
generated problems was followed. The test results indicate that problems with up to 30 jobs can be
readily solved on a microcomputer in less than 12 minutes. This represents a significant improvement
over previously reported results for both dynamic programming and mixed integer linear programming
approaches.

Key words. Single machine scheduling, dynamic programming, greedy heuristics, bicriteria optimiza-
tion, branch and bound.

1. Introduction

The extensive interest in single machine scheduling (SMS)over the last 30 years
stems partly from the fact that effective shop floor control often means developing
a schedule that reduces the bottlenecks. In most cases, the primary bottleneck can
be found at a single machine or work center. The purpose of this paper is to
present a methodology that extends the size of single machine scheduling
problems that can be solved to optimality. In particular, for a given set of n jobs
with arbitrary due dates, we consider the problem of finding a sequence that
minimizes the sum of the corresponding flow time and earliness penalties. In the
model, it is assumed that each job is available simultaneously at time zero, and
that once started, must be processed without interruption. Further assumptions
are that all due dates must be met, and that setup times are sequence in-
dependent, implying that they can be added to the processing times.

Journal of Global Optimization 3: 289-309, 1993.
(~ 1993 Kluwer Academic Publishers. Printed in the Netherlands.

290 JONATHAN F. BARD ET AL.

The flow time penalty is commonly included in scheduling models, and provides
a weighted measure of how long it takes to complete a work order. The
corresponding function may be viewed as a surrogate for the capital expenses
associated with building and operating a facility. When all jobs are weighted
equally, it is equivalent to the makespan.

The earliness penalty is used to model the inventory costs that arise at the
various stages of production. In fact, a cornerstone of the just-in-time manufac-
turing philosophy is that excess inventory at any stage is wasteful and should be
rigorously avoided. Because value is added to a job as it is processed, the
resulting holding costs increase proportionally. The earliness penalty thus repre-
sents the cost incurred in storing an item until it is shipped. Here, warehousing
must be taken into consideration. If inventories are small and fast moving, storage
may be assigned to special areas near the production facility. Large finished goods
inventories, however, may occasion additional overhead, rental, and transporta-
tion costs.

A restricted version of this problem was first investigated by Fry and Leong
(1987) using a mixed integer linear programming (MILP) formulation. They
limited their analysis to the case where the flow time penalties are the same and
the earliness penalties are the same for all the jobs; no solutions were obtained
for problems with n > 14. Related work is reported by Faaland and Schmitt
(1987) who are primarily concerned with improving existing bounds and develop-
ing heuristics, and Sen et al. (1988) who derive new bounds for an an enumerative
algorithm.

In a review of the SMS literature, Gupta and Kyparisis (1987) offer two
different categorizations of the general problem. The first centers on efforts to
determine batch sizes when a series of products are to be manufactured on a given
machine. The goal here is to strike a balance between setup and inventory holding
costs. Notable contributions in this area have been made by Bomberger (1966),
and Dobson et al. (1987), just to name a few. The latter studied the effect of
batching on the total flow time, and provide a variety of heuristics and bounds for
the multiproduct case.

The second category deals with fixed lot sizes, and includes problems where the
set of jobs must be scheduled to meed one of several objectives, such as
minimizing the total (weighted) completion time, minimizing the total (weighted)
tardiness, or minimizing the number of late jobs (e.g. see Baker and Bertrand
1981, Bratley et al. 1971, Harriri and Potts 1983, and Kanet 1981). The degree of
difficulty of the underlying problem depends on the nature of the organizational
and technological constraints that are imposed.

The problem considered in this study falls in the second category. In the
analysis, we use a branch and bound procedure in the context of dynamic
programming (DP) to implicitly generate ~ and explore the state space (Bansal
1980, Morin and Marsten 1977, Potts and Van Wassenhove 1985). At each
iteration of the DP, lower bounds are computed by permitting jobs to be split.

SINGLE MACHINE SCHEDULING 291

Tight upper bounds are obtained at the outset with a randomized adaptive greedy
heuristic which provides the key to effective fathoming. Computational results
confirm that the presence of good feasible solutions dramatically cuts down the
size of the state space. This allows us to readily solve 30 job problems on a
microcomputer relying on only 550 kilobytes of memory.

In the next section, notation is defined and the dynamic program is developed.
This is followed by the presentation of the lower bounding technique in w and a
discussion of the greedy heuristic. A procedure for optimally inserting slack time
into a given sequence is also detailed. Computational experience is highlighted in
w along with some insights gained from testing. We close with an assessment of
the methodology.

2. Notation and Model Development

The problem addressed consists of a set of independent jobs J = { 1 , . . . , n} that
are to be processed without preemption on a single machine. The jth job is
characterized by the following data:

aj : earliness penalty of job j
Aj : flow time penalty of job j
pj: processing time of job j
dj: due date for j o b j
cj : completion time of job j

where all values are assumed to be nonnegative, and pj integer. Because it is
stipulated that all jobs are available at time zero, the flow time and completion
time of a particular job are identical. The objective is to find a feasible schedule,
o-s, for J that minimizes ~=1 [Ajcj + a j (d j - cj)]. For the simple case where all
the due dates are equal and Aj ~>aj for all j, the problem is equivalent to
minimizing the weighted sum of completion times, and can be solved by sequenc-
ing the jobs in the nondecreasing order of the ratio p j / (A j - a j) . Alternatively, if
aj/> Aj for all j, the problem is equivalent to maximizing the sum of weighted
earliness (Chand and Schneeberger 1988).

In general, a schedule may be specified by assigning a start time to each] E J,
or, for our purposes, by specifying a feasible sequence, J2i, and slack between
jobs. Notationally, this is represented by: cr i = ((J l , s l) , . �9 �9 , (J , , s ,)) , where]k
is the job scheduled in the kth position, and s~ is the amount of slack inserted
before it. For every o- i there is a corresponding flow time f which is equal to the
completion time of j , .

Following the approach of Held and Karp (1962), define a subset of jobs
S = (J l , J2 ,] i } of cardinality i. Similarly, define a feasible sequence Of +--S
as a list of jobs that can be processed in the prescribed order without violating the
due date constraints. The pair (S, f) corresponds to the s t a t e of the dynamic

292 JONATHAN F. BARD ET AL.

program, while the stage is associated with the number of jobs currently under
consideration.

The optimal value function, Fi(S, f) , or cost-to-go from stage 0 and initial state
(Q, 0), to stage i and state (S, f) , can be derived using the logic of forward
dynamic programming. Assume that the costs-to-go from (0, 0) to all states at
stage i-1 are known, and let job k be the next job to be added to the schedule. At
stage i we must consider all states (S', f ') , such that S' is any permutation of the
set of i jobs containing job k and f ' is the flow time for a particular S'. Here, f '
ranges between Eje s, pj and max[d k : k E S']. The minimum cost-to-go can be
computed from the known costs-to-go to stage i-1 by considering all the
immediate predecessors of (S' , f ') at stage i-1 that do not contain job k. The
optimal path to (S', f ') , must pass through one of these predecessors. Therefore,

Fg(S', f ') = akr(k) + Z k f ' + minT[Fi_l(S'\(k}, f ' - Pk -- t)], (1)

where T = {0 , f ' - 2jeS,\{k}pj}, and r(k) is an earliness function defined as
follows:

r(k) = { dk - f ' otherwise if dk -- f ' >~O

The earliness function in (1) returns the slack time that remains for the
candidate job, and is used to ensure that the due dates are met. This is
accomplished by setting the slack time to a very large value (~) whenever the due
date constraint of that job is violated. The bounding procedure, described
presently, then fathoms the state.

The second term in (1), hkf' , is the flow time penalty for job k that results
when it finishes at time f ' . These first two terms represent the marginal cost of
going from stage i-1 to stage i. The last term is the optimal cost of scheduling the
remaining i-1 jobs for a reduced flow time o f f ' - Pk -- t, where t is the slack that
is inserted before the start of job k.

By extending the analysis so that any unscheduled job may be considered for
the ith position, we get the general recurrence relation:

F~(S, f) = min [akr(k) + h k f + min (Fi_l(S\{k), f - Pk -- t)}] (2)
k E S t~ET '

where i = 1 , . . . , n; f = Eje s p j , . . . , maxjEs[dj], S ranges over all subsets of size
i, and now T = { 0 , . . . , f - E j e s p j } .

The boundary condition at stage 0 for the initial state (~, 0) is F0(Q, 0)= 0.
Finally, at stage n, all jobs have been scheduled so it is possible to determine the
minimum cost solution by solving

min J, f) : f ~ p ; , . . . , m a x (d j "] = 1 , . . . , n (3)

S I N G L E M A C H I N E S C H E D U L I N G 293

and then backtracking to find the corresponding sequence, 12", and slacks, s*.
The range on f ensures that all feasible states at stage n are considered. A small
example is presented the Appendix to highlight the computations.

For a reference that problem (2) is NP-complete, see the subsection in Garey
and Johnson (1979) on "Sequencing to Minimize Weighted Completion Time" on
one processor. Informally this result is supported by the observation that (2) is
equivalent to a modified TSP in which m(~n) cities are partitioned into n disjoint
subsets with the objective of finding a minimum cost tour that visits exactly one
city in each subset. Dreyfus and Law (1976) show that the DP formulation of this
problem has complexity O(~n22n), where ~ is the maximum number of cities in
any one subset.

3. Solution Methodology

Problem (2) was derived using the pulling or recursive fixing logic of dynamic
programming where one determines the best (least cost) way to enter a given
state from all previous states. Either forward or backward recursion may be used
to perform the calculations. In solving problem (2), however, we adopt a reaching
algorithm which is more efficient when branch and bound is employed. Reaching
is strictly a forward scheme where the total cost of going from the origin via a
given state to an immediate successor state is computed and compared with the
cost of the current path to that state. If the new path offers an improvement, it
replaces the incumbent. Denardo and Fox (1979) demonstrate that reaching runs
faster and requires less storage than pulling when any of the intermediate states
can be fathomed.

Before presenting the algorithm, we introduce some additional notation and
discuss the concepts underlying the bounding scheme. First, a distinction must be
made between bracketed and unbracketed subscripts. The former is a pointer to
the job occupying that position in the schedule, while the latter refers to the job
itself. For instance, P5 is the processing time of job 5, and P(5) refers to the
processing time of the fifth job in the schedule. With this in mind, let A(s,f) be the
set of successors of the state (S, f) at stage i, and let to k be the window of
feasibility for job k. A successor of stage (S, f) is any state (S, j) such that

= S k/{k}, k@ JkS; f E [f +Pk, f +Pk + Wk], and

Wk = min[dk - Ck, min (d(j) - c(j)] where the inner minimization is

taken over

J = { j : j '= i + 2 , . . . , n such that d(j)~< d(j§)

]

a n d c (j) = f + p k + ~, p(m)}.
re=i+2

294 JONATHAN F. BARD ET AL.

The set S is formed by adding one of the remaining (unscheduled) jobs k to S.
It is tentatively scheduled as early as possible. The flow time 3 ~ can range over the
limits established by w k. To test the feasibility of the resulting state, the remaining
jobs are tentatively ordered according to their due dates (earliest due date (EDD)
first), with no intervening idle times between them. This gives rise to the set J.
The differences between the due date of each of these jobs and its completion
time is calculated; % is the minimum value obtained over all the remaining jobs.
If % is negative there are no successor states of (S, f) of the form (S tO {k}, fk) ,
f k >~f + Pk since the due date of at least one of the remaining jobs will be
violated by any schedule passing through (S U {k}, fk) . This is based on the
following well known result.

PROPOSITION 1. If a schedule formed by arranging a set of jobs in EDD order
with no intervening idle time is infeasible, then no feasible schedule of the jobs exist
regardless of the permutation chosen.

An important feature of the reaching method is that when a stage is entered, the
optimal paths and their costs are known for all previous states. The significance of
this comes into play in the computation of lower bounds and in the implementa-
tion of fathoming procedures. Techniques to reduce the state space are usually
based on two approaches. The first is to try to fathom a state by comparing the
cost of a (possibly infeasible) schedule through that state with the cost of the best
feasible schedule known. The second tries to establish dominance properties
which permit the elimination of certain states and all schedules passing through
them (e.g., see Erschler et al. 1982).

3.1. BRANCH AND BOUND

The idea of using branch and bound to reduce the state space of a dynamic
program was first proposed by Morin and Marsten (1976) who applied it to the
travelling salesman problem and a nonlinear knapsack problem. Barnes and
Vanston (1981) also used it to solve a machine scheduling problem with delay
penalties for late jobs, and sequence dependent setup costs and times. They
report results for 20 job problems.

To see how a state can be fathomed, assume that cost-to-go to (S, f) is known,
but the best schedule for the remaining n - i jobs starting at flow time f is not
known. If a relaxation of the latter problem can be solved, then the sum of the
cost-to-go to (S, f) and the solution of the relaxed problem will give a lower
bound on the cost of the best schedule through (S, f) . Notationally, let R(S, f)
be a relaxed solution for scheduling the remaining n - i jobs, and G(S, f) be the
cost of the best schedule passing through the state (S, f) . Then

F~(S, f) + R(S, f) <~ G(S, f) . (4)

Now, suppose that we have a feasible schedule o- with corresponding cost T o. If

SINGLE MACHINE SCHEDULING 295

T~ < Fi(S , f) + R(S, f) then from (4) we have

T,~ < G(S, f) . (5)

Thus, if the cost of the feasible solution is less than the cost of the optimal
solution passing through (S, f) , all schedules passing through this state can be
eliminated from further consideration.

Equation (4) indicates that the tighter the lower bound on the optimal solution,
the greater the likelihood of fathoming a state. Similarly, (5) implies that the
closer the feasible solution is to the optimum, the greater the number of
redundant paths.

3.2. LOWER BOUNDS

Because the relaxed problem must be solved for each state of the DP, the
accompanying computational effort should be minimal. At the same time, the
solution must provide a close approximation to the best cost of a feasible schedule
through the state. These requirements are often in opposition, and hence must be
resolved satisfactorily if the bounding scheme is to be effective.

The method developed for generating lower bounds is based in part on the
work of Posner (1985) who addresses the problem of minimizing the weighted
completion time of n jobs subject to deadlines. Lower bounds are obtained by job
splitting. His procedure, denoted as LB, is adapted to our problem by partitioning
the remaining jobs into two mutually exclusive sets A and B, where

A: the set of remaining jobs whose flow time penalties are less than or equal to
their earliness penalties (Aj ~< %).

B: the set of remaining jobs whose flow time penalties are greater than their
earliness penalties (Aj > %);

The following algorithm generates a lower bound on the cost of assigning start
times to the jobs in A.

P R O C E D U R E LOWER_BOUND
Input: %, A j, pj, dj for all j E J, A
Output: Lower b o u n d (Cassign) and schedule for jobs in A

Step 0,~ Cspli t : 0 , d m a x : max[dj : j ~ A], E = {j: dj = max[d k : k ~ A]),

= A\E, Wj -~- Olj - - t~j, j ~ A, Cinitia 1 : Z Ajdj
jEA

Step i: I f E = 0 Then Cassig n : Cinitia I "~ Cspl i t , Stop
Else

wt/pt = max[w/pj: j E E]

Endif

296 J O N A T H A N F. B A R D E T A L .

Step 2: Let T = {kE/7S: d k ~ d m a x - P t }

If there exists a k E T such that wk > wt Then
Pk P~

r E {j : dj =max[dk: k E T and Wk/Pk > wJp,]}

Go TO Step 3
Else

Assign job t to start as late as possible (i.e., at time dma x - P t)

E ~---E U T~(t}
/~ ~--/~\T

dmax = dmax - Pt
If E = 0 Then

E= {j : d i =max[dk: k e /~]}
dma x = max[d]: j E E l

~- EkE
Go To Step 1

Step 3:

Endif

Endif

Split job t into two jobs, the first of size dma x - d r and the second of
size Pt - (dmax - dr)" Assign weights w t (d m a x - dr)/Pt and
w t (P t - (dma x - d r)) / p t t o the two jobs, respectively. Schedule the
first job as late as possible (to start at time dr), and Set

E~--EU (r}, E = / ~ \ { r }

Cspli t = Cspli t -- w t (d m a x - dr)(p t - (dma x - dr))/pt

Label the second job t

Set drnax ~ dr, t ~-- r
Go To Step 2

In Step 3, the cost incurred in splitting jobs, Csplit , must be subtracted from the
cost of the assignment in order to ensure a valid lower bound. This is in contrast
to LB where Csput(CBRK) is added to the cost of the assignment to obtain the
final cost of the lower bound.

The procedure LB can also be applied to the set B with the following

modifications:

(i) dma x is initialized to f + Eje B pj.
(ii) The initial cost of the assignment (Cinitial) is set to EjE B (A j r + aj(dj - f)) .

This change is required since the lower bound is computed for an
intermediate state at which a partial schedule already exists.

S I N G L E M A C H I N E S C H E D U L I N G 297

(iii) The due dates used in LB are modified to reflect the fact that a flow time
of f has already elapsed. This is done by using dj - f as the effective due
date for job j.

(iv) The weights wj used are set equal to Aj - a].
(v) In Step 2 of LB, job r is identified as follows: r E {]: dj = max[d k : k E T

and wg/pk > wt/pt]}. This change is necessary because the assumption that
the jobs are indexed in increasing order of their due dates no longer holds.

3.3. DOMINANCE PROPERTIES

If a certain ordering of two jobs in a feasible sequence can be shown to produce a
schedule that is never worse than the best possible schedule formed from the
sequence created by exchanging these jobs, then the second sequence can be
fathomed. A similar statement can be made with regard to the insertion of slack
time between two consecutive jobs] and k, whose earliness penalties are greater
than their flow time penalties. If job j is not at its due date, the schedule created
by increasing its completion time by as much as a single unit, will result in a cost
reduction. Thus, the second state (S, f + 1) dominates the first (S, f) .

More formally, assume the DP is at (S, f) , and let job j be the last one
scheduled. Define J'-=J~S, and the parameter /3j-=ot]- Aj as the difference
between the earliness and flow time penalties of job j. The set of states that can
be reached from (S , f) are of the form (SU{k} , f + p ~ + s k) , k E J ' . The
following dominance properties play a significant role in reducing the cardinality
of this set.

CASE I -/3j > 0 (earliness penalty greater than flow time penalty)
(i) /3~ > 0: If f + Pk < min[d], dk] then only state (S U {k}, f + Pk) need be

reached from (S, f) . All other states (with s~>0) can be
fathomed.

Proof: Suppose that state (S, f + p~ + sk) is reached from the present
state. Then if f + s k <~ dj, the completion time of job j can be
moved forward by sk, resulting in a decrease in cost of SkBj. If
f + s k > dj, the completion time of job] can be moved up to dj,
resulting in a decrease in cost of/3j(dj - f) . Thus, all states with
s~ > 0 are dominated.

(ii) flk < 0: I f f < min[d i, dk] then all feasible successors (S U {k}, f + Pk q- Sk)
must be considered.

(iii) /3 k~<0: If f +p~ ~min[dj , dk] then no successors of the present state
(S, f + Pk + Sk) need be considered.

Proof: Suppose that state (S, f +Pk + Sk) is reached from the present
state. If jobs j and k are now interchanged, a cost reduction of
-/3k(s ~ + pj) +/3j(s k + p~) results. This follows directly from the
fact that/3 k ~< 0 and/3j > 0. This reduction can be achieved without

298 J O N A T H A N F. B A R D ET AL.

(iv) /3 k ~< 0:

Proof:

violating the feasibility of the remaining jobs since the interchange
of the two jobs does not affect the start times of any of the other
jobs.
If f + Pk > min[dj, dk] then only state (S, f + Pk) need be con-
sidered.
The state (S, f) is feasible and therefore dj is greater then or equal
to the flow time, f. If dj < f + Pk, the jobs j and k cannot be
exchanged without violating the feasibility of]. As a result, the
state (S t.J {k}, f +Pk) must be considered. On the other hand,
any state (S U {k}, f + Pk + Sk) with s k >0 , will be dominated by
(S U {k}, f + Pk) due to the associated reduction in cost --~kSk . if
d k is less than f + Pk, the state (S U {k}, f + Pk) is infeasible.

CASE II-/3j ~< 0 (flow time penalty greater than or equal to earliness penalty)
(i) /3 k > 0: All states (S U {k}, f + Pk + Sk) must be considered.

(ii) /3 k <~ 0: Only the state (S U {k}, f + Pk) need be considered.
Proof: Because/3j and/3 k are both less than or equal to zero, it can never

be optimal to insert idle time between jobs j and k.

3.4. FINDING FEASIBLE SOLUTIONS

In our experience, the most promising heuristics for generating feasible solutions
to difficult combinatorial optimization problems incorporate some amount of
randomness in the search (e.g., see Bard and Feo 1989). Many of the recent
approaches derive from analogs in genetic and physical systems. For example,
simulated annealing is a technique which is based on the probabilistic behavior of
atoms and molecules in a thermal system being cooled in a controlled environ-
ment (Kirkpatrick et al. 1983). At each step in the algorithm, a set of "good"
choices is available, but the "best" isn't always chosen. The motivation for this
strategy is to avoid getting trapped at a local solution. By making a "less than
optimal" decision with a certain probability, the same solution doesn't always
arise. Thus, many different paths can be explored through repeated trials.

In this study, we develop a greedy randomized adaptive search procedure
(GRASP) for heuristically solving the SMS problem (2) that exploits these ideas.
GRASP combines the power of greedy selection rules, randomization, and
conventional search techniques such as neighborhood exchanges. The approach is
iterative with each GRASP iteration consisting of a construction phase and a local
minimization phase. More specifically, suppose there is a set of elements whose
costs depend upon their position in a sequence. At every stage in the construction
phase, one of the remaining elements is selected and added to the partial
sequence. A greedy function is used to estimate the cost of the elements that can
be included at that stage. Two important aspects of the heuristic come into play
~here. First, the computation of these costs is restricted to depend only on the set

S I N G L E M A C H I N E S C H E D U L I N G 299

of remaining elements. This is the adaptive aspect of the method. Second, a
greedy rule is used to compute the costs of the remaining elements and to
determine their suitability relative to the others. The "better" elements are those
with the smaller costs.

A restricted candidate list of elements is compiled next and one of the elements
(jobs) is chosen. A purely greedy approach would pick the element with the least
cost. This is analogous to steepest descent. While such a strategy might produce
good results, it is unlikely to yield optimal solutions with any degree of con-
sistency. If the list is perturbed, however, there is a greater chance of obtaining an
improved solution over many GRASP iterations. This is the motivation for the
randomization of the procedure. Instead of picking the best element, a probability
measure is imposed on the candidates and one is picked accordingly. In practice,
an upper limit is placed on the size of the list to restrict the selection to those that
have relatively favorable costs. This prevents the greedy function from being
overly compromised. One approach for doing this is to include all elements whose
costs are within a fixed percentage of the cost of the best element. The choice of
the list restriction method is an art that requires some insight into the particular
problem being solved. The size should be large enough so that many different
solutions are examined, but should not be too large to allow degradation of the
quality of the solutions obtained.

For problem (2), the earliness and flow time penalties of the jobs as well as
their due dates are used to estimate the cost of assigning a job to the next position
in the sequence. This is done in two stages; all jobs in J ' are considered. To
begin, a prospective job, call it j E J', is selected and assigned a completion time
so that none of the remaining jobs in J' \{j} violate their due date constraints.
(Feasibility is checked by constructing the EDD sequence and appealing to
Proposition 1. The procedure for making the assignment is, in part, based on wj,
aj, and Aj ; see Feo et al. 1991 for a detailed explanation). The cost incurred by
scheduling job j to finish by this time is calculated. Next, completion times are
assigned to each of the remaining jobs based on their due dates and the
completion time of j. Costs corresponding to these jobs are computed and the
total cost of assigning j to the next position in the sequence is found by adding
these together. This is done for all j ~ J ' that can be feasibly scheduled at the
current position. A restricted candidate list is then constructed and a job
randomly selected.

Once a feasible schedule is generated, two additional procedures are applied to
assure that a local optimum has been obtained. The first, INSERT_SLACK,
efficiently inserts optimal slack times between jobs once a sequence is specified.
The details are given in the next section. The second, POST_PROCESSOR,
performs pairwise swaps and then calls INSERT_SLACK to reoptimize. When no
further improvement is possible with respect to the pairwise swaps, the incumbent
is updated and the next GRASP iteration is executed.

The general flow of the GRASP is outlined below. The details on how the final

300 J O N A T H A N F. BARD ET AL.

set of parameters was chosen, and how well the heuristic performs over a wide
range of problems are discussed in Feo et al. (1991). In the actual implementa-
tion, the candidate list is restricted to three jobs (clim). Many other restrictions
were investigated but proved to be inferior for this SMS problem.

In the development, we make use of the following additional notation:

clim:
limit:
0j:
F:
~/:

p j:

maximum length of candidate list
number of GRASP iterations
marginal slack time of job j
candidate list
integer index
sum of processing times through the jth job in the current
schedule
feasible delay window of jth job in current schedule

PROCEDURE GRASP_OUTLINE
P0 = 0 (initialize sum of processing times)
Construct EDD list
Do k---1, limit (GRASP loop)

J ' ~--J (initialize set of unscheduled jobs)
Do i = 1, n (construction loop)

Do j E J ' (greedy rule loop)
Compute toj for job j
Select completion time of job j
Estimate completion time of all other jobs in J '
Compute cost of job j

Next j
Find minimum cost job Jmin
F ~-- { Jmi,} (initialize candidate list)
While [(IFI ~ clim) and (J'kF ~ 0)] (construct candidate list)

Find next smallest minimum cost job Jmi, E J'kF

F~--F U (Jmin}
Endwhile

= UNIFORM[I, IFI] (select an integer at random)
Add Jn to sequence
J' ~--J'\(Jn}
& = P~-1 + P~ (update sum of processing times)

Next i
Call INSERT_SLACK (Call optimal slack time insertion routine)
Update incumbent schedule
Call POST_PROCESSOR (Call neighbor exchange routine)

Next k

SINGLE MACHINE SCHEDULING 301

3.5. OPTIMAL IDLE TIME INSERTION

The performance of the GRASP is greatly enhanced by the fact that it is possible
to obtain an optimal schedule for a given sequence with very little effort. The
proposed method uses a marginal cost, 0j, as the criterion to determine whether
or not idle time should be inserted before job j E J. For a given sequence, an
initial schedule is constructed without any slack. Each job (j) has a window of
feasibility, o)t, associated with it that determines how much idle time, s t , can be
feasibly inserted. Starting with the last job (n), the completion time of each job
(j) is moved up to the limit imposed by o)j whenever 0j < 0. The completion times
of the other jobs are adjusted accordingly.

The marginal cost for a particular job is calculated by maintaining information
about the completion times of the jobs that follow it. This value measures the
increase or decrease in the cost of the schedule that results from increasing the
completion times of these jobs by one unit. If 0j is negative, it indicates that the
cost of the schedule will decrease by this amount for every unit of time job j is
delayed. The maximum idle time that can be inserted is governed by the window
of feasibility.

P R O C E D U R E INSERT_SLACK
Input: at, At, pj , pj for all j ~ J
Output: cj, s t for all j @ J

O)n = d (n) - Pn (compute feasible delay window for last job)
0(,) = A(,~ - a(,) (compute marginal slack time cost for last job)
D o j = n , 1

If (0u) > 0) Then (test marginal slack time cost of jth job)
sj = 0 (set slack time of jth job to zero)
0(j_x) = 0u) + A(j_I) - a(j_l) (compute marginal cost of next job)

Else
sj = wj (set slack time of jth job to its feasible delay window)
0u_x) = Au_I) - au_l) (compute marginal cost of next job)

Endif
wt_ 1 = MIN[o)j, d(t_l) - Pi-1] (compute feasible delay window of next job)

Next j
c(0) = 0 (initialize earliest start time of "dummy" job)
Do j = 1, n (set new schedule)

c(j) = MAX[c(j -1) -P(j -1) , /9 / -1 - si-1] (compute completion time of jth job)
sj = c(~)- (c j _ l) - P(t-1) (compute slack time of jth job)

Next j

PROPOSITION 2. The procedure I N S E R T _ S L A C K produces an optimal
schedule for a given sequence.

302 JONATHAN F. BARD ET AL.

The optimality of the procedure can be inferred from the following observations.
At each iteration the decision to change the completion time of the current job
depends on its marginal cost. This value depends on the penalties of the job itself
and those of the jobs succeeding it. Slack is inserted before job (j) only if
h(j) - a(j) < 0 is sufficiently negative to offset the cost of delaying the jobs that
have already been scheduled. If this is the case, job (j) is moved as far forward as
possible and its marginal cost is set to O. If the marginal cost of (j) is positive, no
action is taken and its immediate predecessor is considered. Finally, because each
job is initially scheduled at its earliest possible start time, feasibility is always
maintained.

3.6. COMPUTATIONAL COMPLEXITY

In the initialization phase of the algorithm, the EDD list is constructed. This is an
O(n log n) operation. The selection of a job for a position in the schedule uses a
candidate list which is ordered by cost. The cost for a job is calculated taking into
account its effect on the remaining jobs. This can be done in O(n) time, implying
that the construction of the candidate list is an O(n 2) operation. Because the list
must be constructed once for each position in the schedule, the order of the basic
heuristic is O(n3). With regard to post processing, note that a swap requires three
operations. The first is the removal of idle times from the schedule. This is an
O(n) operation. Next, a check for feasibility of the new schedule must be made.
This can be performed in constant time or equivalently O(1). Finally, the
insertion of idle time in the new schedule is an O(n) operation. Therefore, each
swap is O(n). Assuming that K swaps are made at each iteration, the procedure
runs in O(~n) time.

4. Computational Experience

In order to evaluate the performance of the proposed methodology, a series of
data sets for 15, 20, 25 and 30 job problems was randomly generated and solved.
Each data set was subdivided into three categories: Type I - the earliness penalty
and the flow time penalty are approximately equal for all jobs; Type I I - the
earliness penalty is greater than the flow time penalty for about two-thirds of the
jobs; and Type Ill - the earliness penalty is greater than the flow time penalty for
about one-third of the jobs.

In addition to this classification, two parameters known as the earliness factor e
and the due date range r, were used to characterized each data set (see Sen et al.
1988). The following combinations of (e, r) were tested: (0, 1/4), (0,3/4),
(1/4, 1/2), and (1/2, 1). Finally, the values of the parameters aj, hi, and pj were
specified by generating three random integers in the interval [0, 10] and assigning
one to each. Due dates for the jobs were selected at random from the range:

S I N G L E M A C H I N E S C H E D U L I N G 303

p j (l + e - r) , . . . , pj(1 + e + r) .
- j=l

The experimental design consisted of 5 cases for each of the 4 job sizes, 3 types,
and 4 (e, r) pairs, giving a total of 240 instances. In the testing, the GRASP is run
first to furnish an upper bound for the DP. The high quality of the solutions
obtained at this stage argued against further GRASP runs at intermediate states.
The empirical statistics collected included (1) the time taken by the DP to either
solve the problem or to exceed available memory, and (2) the number of states
visited. A third statistic of interest is the size of the underlying state space.
However, this value is not easily computed so an approximation was derived
based on Ej pj and max[dj" j ~ J]. A comparison between the actual size and the
number of states visited is a good indication of the efficiency of the dominance
rules used to fathom states.

4. I. RESULTS

All codes used in the study were written in C by the authors using the Microsoft
Compiler. The state data is stored as linked lists, and hashing functions are used
to search for previously generated states during the recursion. Testing was done
on a PS/2 Model 80 with approximately 550 kilobytes of available memory.
Because the state space grows exponentially, this number is of particular impor-
tance. The branch and bound code requires that all states reached from the
generating state, as well as those at the nex t stage be kept in RAM. The
remainder can be relegated to secondary storage and retrieved if necessary when
recovering the optimal solution.

Computational results are reported in Table I by problem size and type. Each

Table I. Results for the DP branch and bound methodology

No. of Problem Avg. Std. Avg. No. Std. No. Opt.
Jobs Type Time Deviation of States Deviation Soln.

(secs) (secs) Visited (states) GRASP

15 I 7.45 1.96 60.55 57.08 20
15 II 7.93 7.03 113.45 127.84 20
15 III 7.85 2.26 46.80 42.86 20

20 I 18.34 8.39 126.15 81.85 20
20 II 34.45 36.80 312.60 278.59 20
20 III 15.91 8.76 111.75 117.76 20

25 I 58.74 20.89 240.15 182.67 20
25 II 157.92 299.05 1040.15 1494.78 20
25 III 33.65 51.62 618.15 1947.09 19

30 I 368.45 787.20 2934.17 6684.39 20
30 II 643.55 992.93 2661.84 3149.96 20
30 III 200.95 518.68 2195.11 3838.08 19

304 J O N A T H A N F. B A R D ET AL.

800

600

400

200

0
0 2 0 3 0 40

Number of jobs

Fig. i Relationship between problem size and solution time.

[-.

0

E
0

rind

,,<

---=e--- Type I Problems

�9 Type II Problems

= Type III Problems

line represents an average of 20 instances, and contains information on the
'average time taken by the DP', the corresponding standard deviation, the
'average number of states visited', the corresponding standard deviation, and the
number of times the GRASP found the optimal schedule. As can be seen, there
was only one case in the 25 job problem set, and one case in the 30 job problem
set where this was not true. In each instance, the GRASP was run for 100
iterations but in all but a handful of cases, found the best solution in five or few
tries. CPU time averaged 1 second for the 15 job problems and 10 seconds for the
30 job problems. More details are provided in Feo et al. 1991.

The DP solved all instances to optimality, although time and memory require-
ments grew sharply with n. The graphs in Figures 1 and 2 chart the accompanying
performance for the three classes examined. It is interesting to note that the
algorithm had the most difficulty with the Type III problems. Recall that jobs in
this class are 67% more likely to have earliness penalties greater than their flow
time penalties, so the size of the set A used in computing the lower bounds will be
on average twice that of B. In light of this ratio, the results imply that the
procedure used to find lower bounds is less effective for those jobs wanting to be
scheduled as close to their due dates as possible.

4.2. DISCUSSION

In general, we found that the running time of the DP depends greatly on the
quality of the upper bound. To cite one example, consider the sixth problem of
Type III in the 30 job set whose optimal solution is 27,294. The solution obtained
by the GRASP was 27,297. The running time of the DP using 27,297 as a bound is
572 seconds and the number of states visited is 3419. When the problem was
resolved using the optimal solution as the upper bound, the running time of the

SINGLE MACHINE SCHEDULING 305

3000

2000

1000

!

0 20 30 40

, m

. m

E

<

m---- Type I Problems

Type II Problems

-- Type III Problems

Number of jobs

Fig. 2. Relationship between problem size and no. of states visited.

DP decreased to 198 seconds and the number of states visited fell to 1223. The
implication is that a very small improvement in the upper bound can result in a
dramatic improvement in the performance of the DE

A second means of evaluating the performance of the branch and bound
approach is by comparing the potential size of the unrestricted state space with
the number of states actually generated. The former is of order O(/x2n), where
/x = max[dj - pj : j E J]. Table I reveals the average number of states visited by
the DP for the 30 job problems is about 3000 in the worst case. This is a minute
fraction of the total number that arise if no dominance rules or bounding
techniques are employed.

5. Summary and Conclusions

The test results for the DP highlight the effectiveness of the proposed branch and
bound methodology in solving this single machine scheduling problem. Optimal
solutions to 30 job problems are routinely obtained in less that 12 minutes,
regardless of the data characteristics, and with little variation in computational
effort. Standard deviations for processing times and states visited are of the same
order of magnitude as their means.

In general, by combining efficient heuristics with dominance rules and tight
lower bounds, we have been able to consistently solve problems from 50% to over
100% larger than those reported in the literature. One factor contributing to our
success has been the GRASP which generates good feasible solutions quickly.
And because its running time is polynomial, it can be used on much larger
problems. The testing showed that the GRASP found the optimal solution in 238
out of 240 instances.

306 JONATHAN F. BARD ET AL.

An interesting extension to the current problem involves the incorporation of
sequence dependent setup costs in the model. In this case, a third component
corresponding to the last job scheduled would have to be added to the vector
defining the state. This would cause the size of state space to expand by a factor
of n. Finally, we note that the methodology can be easily extended to accommo-
date a variety of different terms in the objective functions such as lateness
penalties, weighted completion times, and tardiness factors just to name a few.

A p p e n d i x

The example presented below demonstrates the mechanics of the reaching
method. The data for the problem are contained in Table A1. Three jobs must be
scheduled, all of which are available at time zero.

Table A1. Data for example

JOB pj d i Aj %

1 6 10 1 5
2 3 10 2 1
3 3 15 1 4

The algorithm starts at (0 , 0) and reaches out to all successors at stage 1. The
states, A(o ' 0), that can be generated initially are listed in the first column of the
following tableau.

State Marginal Cost Total Cost Best Cost Decision

((1},6) 26 26 26 (0,0)
({1},7) 22 22 22 (0,0)
({2},3) 13 13 13 (0,0)*
({2},4) 14 14 14 (5,0)

* Determined to be on the optimal path during backtracking.

The second column identifies the marginal cost incurred by adding a job to the
set associated with the state under investigation. For example, the first state
reached from (O, 0) is ({1},6). Here , job 1 is added with marginal cost
6A 1 + (1 0 - 6)a 1 = 6 + (4) (5)=26 . The cost-to-go is then added to this value
giving the total cost of reaching the current state via the generating state (see
column 3). If the former was previously generated, its cost-to-go is updated and
listed in column 4. The last column contains the corresponding decision (pre-
decessor) of the current state. This value is used in backtracking to recover the

optimal path.
At the next iteration, successors of the states at stage 1 are generated. Starting

with the first state, ({1), 6), the following states at stage 2 are reached.

SINGLE MACHIN E SCHEDULING 307

State Marginal Cost Total Cost Best Cost Decision

({1,2),9) 19 45 45 ((1},6)
({1,2),10) 20 46 46 ({1),6)

The next state is ({1), 7) which produces the following tableau.

State Marginal Cost Total Cost Best Cost Decision

({1, 2}, 10) 20 42 42 ({1), 7)

Note that the state ((1, 2), 10) is reached from the state ({1}, 6) as well. The
total cost-to-go to this state via ({1), 7) is 46, whereas the cost-to-go via ({1}, 6)
is 42. This results in a change in the decision pointing to ({1), 7) rather than
((1}, 6).

The states reached from the remaining states at stage 1 are listed below, along
with other pertinent data.

CURRENT STATE: ({2), 3)

State Marginal Cost Total Cost Best Cost Decision

({1, 2}, 9) 14 27 27 ({2), 3)
({1, 2}, 10) 10 23 23 ({2), 3)

CURRENT STATE: ({2}, 4)

State Marginal Cost Total Cost Best Cost Decision

((1, 2), 10) 10 24 23 ({2}, 3)

All states at stage 1 have now been considered. The updated list of states at
stage 2 is as follows.

State Best Cost Decision

((1,2},9) 27 ({2},3)
((1,2},10) 23 ((2},3)*

Using the same procedure as before, the states at stage 3 are generated.

CURRENT STATE: ({1,2},9)

State Marginal Cost Total Cost Best Cost Dedsion

({1,2,3),12) 24 51 51 ({1,2},9)
({1,2,3},13) 21 48 48 ({1,2},9)
((1,2,3},14) 18 45 45 ({1,2},9)
({1,2,3},15) 15 42 42 ({1,2},9)

308 J O N A T H A N F. B A R D ET AL.

CURRENT STATE: ({1,2},10)

State Marginal Cost Total Cost Best Cost Decision

({1,2,3},13) 21 44 44 ({1,2},10)
({1,2,3},14) 18 41 41 ({1,2},10)
({1,2,3},15) 15 38 38 ({1,2},10)

The list of the states at stage 3 is given below.

State Best Cost Decision

({1,2,3},12) 51 ({1,2},9)
({1,2,3},13) 44 ({1,2},10)
({1,2,3},14) 41 ({1,2},10)
({1,2,3},15) 38 ({1,2},10)*

At this point, all the jobs have been scheduled so the optimal path can be
uncovered. From the last tableau, we see that the schedule with the least cost has
a flow time of 15. The decision made at this state is ({1, 2}, 10). This implies that
job 3 is the last to be scheduled, and finishes at 15. Also, since the completion
time of the remaining jobs is bounded by 10, the slack time inserted before job 3
is c 3 - P3 - - 1 0 = 15 - 3 - 10 = 2.

Continuing to backtrack, we see that the predecessor of ({1, 2}, 10) is ({2} , 3).
Thus, job 1 is scheduled at stage 2 and finishes at 10. The slack time is
10 - 6 - 3 = 1. The last state that has to be considered is ({2, 3). Job 2 is the only
one remaining and is scheduled without slack. The final sequence is 2 -+ 1-+ 3 as
shown in Table A2.

Table A2. Optimal schedule for example

JOB c~ s t COST

2 3 0 13
1 10 1 23
3 15 2 38

A c k n o w l e d g e m e n t

This work was supported by a grant from the Texas Higher Education Coordinating
Board's Advanced Research and Technology Programs.

References

Baker, K. R. and Bertrand, J. W. M. (1981), A Comparison of Due Date Selection Rules, AIIE
Transactions 13, 123-131.

Bansal, S. P. 1980), Single Machine Scheduling to Minimize Weighted Sum of Completion Times with
Secondary Criterion - a Branch and Bound Approach, European Journal of Operational Research 5,
177-181.

SINGLE MACHINE SCHEDULING 309

Bard, J. F. and Feo, T. A. (1989), Operations Sequencing in Discrete Parts Manufacturing,
Management Science 35(2), 249-255.

Barnes, J. W. and Vanston, L. K. (1981), Scheduling Jobs with Linear Delay Penalties and Sequences
Dependent Setup Costs, Operations Research 29(1), 146-160.

Bomberger, E. E. (1966), A Dynamic Programming Approach to a Lot Size Scheduling Problem,
Management Science 20, 101-109.

Bratley, P., Florian, M., and Robillard, E (1971), Scheduling with Earliest Start and Due Date
Constraints, Naval Research Logistics Quarterly 18, 511-517.

Chand, S. and Schneeberger, H. (1988), Single Machine Scheduling to Minimize Weighted Earliness
Subject to No Tardy Jobs, European Journal of Operational Research 34, 221-230.

Denardo, E. V. and Fox, B. L. (1979), Shortest Route Methods; 1. Reaching, Pruning and Buckets,
Operations Research 27, 161-186.

Dobson, G., Karmarkar, U. S., and Rummel, J. F. (1987), Batching to Minimize Flow Times on One
Machine, Management Science 33, 784-799.

Dreyfus, S. E. and Law, A. (1976), The Art and Theory of Dynamic Programming, Academic Press,
New York.

Ersehler, J., Fontan, G., Merce, C., and Roubellat, F. (1982), Applying New Dominance Concepts to
Job Schedule Optimization, European Journal of Operational Research 11, 60-66.

Faaland, B. and Schmitt, T. (1987), Scheduling Tasks with Due Dates in a Fabrication/Assembly
Process, Operations Research 35, 378-388.

Feo, T. A., Venkatraman, K., and Bard, J. F. (1991), A GRASP for a Difficult Single Machine
Scheduling Problem, Computers & Operations Research 18(8), 635-643.

Fry, T. D. and Leong, G. K. (1987) A Bi-Criterion Approach to Minimizing Inventory Costs on a
Single Machine When Early Shipments Are Forbidden, Computers & Operations Research 14,
363-368.

Garey, M. R. and Johnson, D. S. (1979), Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman & Co., San Francisco.

Gupta, S. K. and Kyparisis, J. (1987), Single Machine Scheduling Research, Omega 15, 207-227.
Harriri, A. M. A. and Potts, C. N. (1983), An Algorithm for Single Machine Sequencing with Release

Dates to Minimize Total Weighted Completion Time, Discrete Applied Math 5, 99-109.
Held, M. and Karp, R. M. (1962), A Dynamic Programming Approach to Sequencing Problems, J.

SIAM 10, 196-210.
Kanet, J. J. (1981), Minimizing the Average Deviation of Job Completion Times about a Common

Due Date, Naval Research Logistical Quarterly 28, 643-651.
Kirkpatrick, S., Gelatt, Jr., C. D., and Veeehi, M. P. (May 13, 1983), Optimization by Simulated

Annealing, Science 220(4598), 671-680.
Morin, T. L. and Marsten, R. E. (1976), Branch-and-Bound Strategies for Dynamic Programming,

Operations Research 24(4), 611-627.
Posner, M. E. (1985), Minimizing Weighted Completion Times with Deadlines, Operations Research

33, 562-574.
Potts, C. C. and Van Wassenhove, L. N. (1985), A Branch and Bound Algorithm for the Total

Weighted Tardiness Problem, Operations Research 33, 363-377.
Sen, T., Raizadeh, F. M. E., and Dileepan, P. (1988), A Branch and Bound Approach the Bicriterion

Problem Involving Total Flow Time and Range of Lateness, Management Science 34, 254-260.

